题目内容

已知f(x)是R上的奇函数,f(1)=2,且对任意x∈R都有f(x+6)=f(x)+f(3)成立,则f(-3)=________;f(2009)=________.

0    -2
分析:根据f(x+6)=f(x)+f(3)需要令x=-3,代入求出f(-3)=0,由奇函数的定义求出f(3)=0,代入关系式求出此函数的周期,利用周期性求出f(2009).
解答:由题意知,f(x+6)=f(x)+f(3),令x=-3,
∴f(3)=f(-3)+f(3),即f(-3)=0,
∵f(x)是R上的奇函数,∴f(3)=0,故f(x+6)=f(x),
∴f(x)是周期为6的周期函数,
∴f(2009)=f(6×334+5)=f(5)=f(-1)=-f(1)=-2.
故答案为:0,-2.
点评:本题是一道抽象函数问题,题目的设计“小而巧”,解题的关键是巧妙的赋值,利用其奇偶性得到函数的周期性,再利用周期性求函数值.灵活的“赋值法”是解决抽象函数问题的基本方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网