题目内容
已知函数f(x)=cos2x-sin2x+2| 3 |
(Ⅰ)已知:x∈[-
| π |
| 2 |
| π |
| 3 |
(Ⅱ)若函数f(x)按向量
| a |
| a |
分析:(Ⅰ)化简函数f(x)的解析式为2sin(2x+
)+1,由 2kπ+
≤2x+
≤2kπ+
,求得x的范围即得单调减区间,再由x∈[-
,
],进一步确定单调减区间.
(Ⅱ)把 f(x)=2sin(2x+
)+1=2sin2(x+
) 项左平移个单位,再向下平移1个单位,即得g(x)的解析式,可得向量
.
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
| 3π |
| 2 |
| π |
| 2 |
| π |
| 3 |
(Ⅱ)把 f(x)=2sin(2x+
| π |
| 6 |
| π |
| 12 |
| a |
解答:解:(Ⅰ)f(x)=cos2x-sin2x+2
sinxcosx+1=
sin2x+cos2x+1
=2sin(2x+
)+1. 由 2kπ+
≤2x+
≤2kπ+
,∴kπ+
≤x≤kπ+
,
∴当k=-1时,∴-
≤x≤-
; 当k=0时,∴
≤x≤
,
又∵x∈[-
,
],∴ -
≤x≤-
,或
≤x≤
,
所以,函数f(x)单调减区间为:[-
, -
]和[
,
].
(Ⅱ)g(x)=2cos2x=2sin(2x+
)=2sin2(x+
),
把 f(x)=2sin(2x+
)+1=2sin2(x+
) 项左平移
个单位,再向下平移1个单位,即得g(x)的解析式,
故 g(x)=2sin2(x+
+
)+1-1=2sin2(x+
),所以,向量
=(-
,-1).
| 3 |
| 3 |
=2sin(2x+
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
| 3π |
| 2 |
| π |
| 6 |
| 2π |
| 3 |
∴当k=-1时,∴-
| 5π |
| 6 |
| π |
| 3 |
| π |
| 6 |
| 2π |
| 3 |
又∵x∈[-
| π |
| 2 |
| π |
| 3 |
| π |
| 2 |
| π |
| 3 |
| π |
| 6 |
| π |
| 3 |
所以,函数f(x)单调减区间为:[-
| π |
| 2 |
| π |
| 3 |
| π |
| 6 |
| π |
| 3 |
(Ⅱ)g(x)=2cos2x=2sin(2x+
| π |
| 2 |
| π |
| 4 |
把 f(x)=2sin(2x+
| π |
| 6 |
| π |
| 12 |
| π |
| 6 |
故 g(x)=2sin2(x+
| π |
| 12 |
| π |
| 6 |
| π |
| 4 |
| a |
| π |
| 6 |
点评:本题考查正弦函数的单调性,y=Asin(ωx+∅)图象的变换,求函数f(x)单调减区间是解题的难点.
练习册系列答案
相关题目