题目内容

已知f(x)=2x+
1
2x

(1)判断函数的奇偶性并证明;
(2)判断函数在(-∞,0)内的单调性并证明.
(1)函数是一个偶函数,证明如下
由已知f(x)=2x+
1
2x
=2x+2-x
∵f(-x)=2x+2-x=f(x)
∴函数是一个偶函数
(2)是减函数,证明如下
任取x1,x2∈(-∞,0),x1<x2
f(x1)-f(x2)=2x1-2x2+
1
2x1
-
1
2x2
=(2x1-2x2)(1-
1
2x1+x2
)

由于x1,x2∈(-∞,0),x1<x2,可得2x1-2x2<01-
1
2x1+x2
<0

∴f(x1)-f(x2)>0,即f(x1)>f(x2
所以函数在(-∞,0)内是减函数
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网