题目内容

在△ABC中,角A,B,C所对的边分别是a,b,c,a2+c2-b2=
1
2
ac

(Ⅰ)求sin2
A+C
2
+cos2B
的值;
(Ⅱ)若b=2,求△ABC面积的最大值.
(Ⅰ)由余弦定理:cosB=
1
4

sin2
A+C
2
+cos2B=sin2(
π
2
-
B
2
)+2cos2B-1

=cos2
B
2
+2cos2B-1

=
1+cosB
2
+2cos2B-1

=-
1
4


(Ⅱ)由cosB=
1
4
,得sinB=
15
4

∵b=2,a2+c2-b2=
1
2
ac

a2+c2=
1
2
ac+b2=
1
2
ac+4≥2ac
,从而ac≤
8
3

S△ABC=
1
2
acsinB≤
15
3
(当且仅当a=c时取等号)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网