题目内容

定义在[-1,1]上的奇函数f(x)是减函数,且f(1-a)+f(1-a2)>0,求实数a的取值范围.
∵函数f(x)是奇函数,
∴f(1-a)+f(1-a2)>0化为:f(1-a2)>-f(1-a)=f(a-1),
∵函数f(x)定义在[-1,1]上的减函数,
-1≤1-a≤1
-1≤1-a2≤1
1-a2a-1 
,解得1<a≤
2

故实数a的取值范围是(1,
2
].
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网