题目内容

正方体ABCD-A1B1C1D1中,E,F分别是AB,C1D1的中点,则A1B1与平面A1ECF所成角的正弦值为(  )
A.
3
3
B.
6
3
C.
1
3
D.
2
2
3
连接C1B,∵E、F分别为AB与C1D1的中点,
∴C1F=BE.又C1FBE,
∴C1FEB为平行四边形.∴C1BEF.而C1B⊥B1C,
∴EF⊥B1C.又四边形A1ECF是菱形,∴EF⊥A1C.∴EF⊥面A1B1C.
又EF?平面A1ECF,
∴平面A1B1C⊥平面A1ECF.∴B1在平面A1ECF上的射影在线段A1C上.
∴∠B1A1C就是A1B1与平面A1ECF所成的角.
∵A1B1⊥B1C,在Rt△A1B1C中,sin∠B1A1C=
B1C
CB1
=
6
3

∴A1B1与平面A1ECF所成角的弦值为
6
3

故选B
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网