题目内容

已知正项数列{an}满足
a
 
1
=P(0<P<1),且
a
 
n+1
=
a
 
n
a
 
n
+1

(1)求数列的通项an
(2)求证:
a
 
1
2
+
a
 
2
3
+
a
 
3
4
+…+
a
 
n
n+1
<1
分析:(1)由已知an+1=
an
an+1
可得,
1
an+1
=
an+1
an
=
1
an
+1
1
a1
=
1
p
1
an+1
-
1
an
=1

数列{
1
an
}是以
1
p
为首项,以1为公差的等差数列,从而可求
(2)由(1)可得an=
1
n-1+
1
p
结合0<P<1可得
an
n+1
=
1
(n+1)(n-1+
1
p
)
1
n(n+1)
=
1
n
-
1
n+1
,利用裂项求和可证
解答:解:由已知an+1=
an
an+1
可得,
1
an+1
=
an+1
an
=
1
an
+1
1
a1
=
1
p

1
an+1
-
1
an
=1

数列{
1
an
}是以
1
p
为首项,以1为公差的等差数列
1
an
=
1
p
+(n-1)×1=n-1+
1
p
an=
1
n-1+
1
p

∵0<P<1∴
1
p
-1>0

an
n+1
=
1
(n+1)(n-1+
1
p
)
1
n(n+1)
=
1
n
-
1
n+1

a1
2
+
a2
3
+…+ 
an
n+1
 <
1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=1-
1
n+1
=
n
n+1
<1
即证
点评:本题主要考查了利用构造等差数列求解通项公式、裂项求和是证明(2)的关键,解题的难点在于发现通项中
an
n+1
=
1
(n+1)(n-1+
1
p
)
1
n(n+1)
=
1
n
-
1
n+1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网