题目内容
(2009•湖北模拟)已知数列{an}中,a1=3,a2=5,其前n项和Sn满足Sn+Sn-2=2Sn-1+2n-1(n≥3),令bn=
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令Tn=b1+b2•2+b3•22+…bn•2n-1,
求证:①对于任意正整数n,都有Tn<
.②对于任意的m∈(0,
),均存在n0∈N*,使得n≥n0时,Tn>m.
| 1 |
| anan+1 |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令Tn=b1+b2•2+b3•22+…bn•2n-1,
求证:①对于任意正整数n,都有Tn<
| 1 |
| 6 |
| 1 |
| 6 |
分析:(Ⅰ)由题意知Sn-Sn-1=Sn-1-Sn-2+2n-1(n≥3),所以an=an-1+2n-1(n≥3),由此能够求出数列{an}的通项公式.
(Ⅱ)①由于bn•2n-1=
•2n-1=
•
=
(
-
).由此能够证明对于任意正整数n,都有Tn<
.
②若Tn>m,其中m∈(0,
),则有
(
-
)>m,则2n+1>
-1,故n>log2(
-1)-1>0,由此能够证明对于任意的m∈(0,
),均存在n0∈N*,使得n≥n0时,Tn>m.
(Ⅱ)①由于bn•2n-1=
| 1 |
| (2 n+1)(2n+1 +1) |
| 1 |
| 2 |
| (2n+1+1)-(2n+1) |
| (2n+1)(2n+1+1) |
| 1 |
| 2 |
| 1 |
| 2 n+1 |
| 1 |
| 2n+1+1 |
| 1 |
| 6 |
②若Tn>m,其中m∈(0,
| 1 |
| 6 |
| 1 |
| 2 |
| 1 |
| 1+2 |
| 1 |
| 2n+1+1 |
| 3 |
| 1-6m |
| 3 |
| 1-6m |
| 1 |
| 6 |
解答:解:(Ⅰ)由题意知Sn-Sn-1=Sn-1-Sn-2+2n-1(n≥3),
即an=an-1+2n-1(n≥3)…(1分)
∴an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+a2
=2n-1+2n-2+…+22+5
=2n-1+2n-2+…+22+2+1+2
=2n+1,n≥3.…(3分)
检验知n=1,2时,结论也成立
故an=2n+1.…(4分)
(Ⅱ) ①由于bn•2n-1=
•2n-1
=
•
=
(
-
).
故Tn=b1+b2•2+b3•22+…+bn•2n-1
=
(
-
+
-
+…+
-
)
=
(
-
)
<
-
=
.…(9分)
②若Tn>m,其中m∈(0,
),则有
(
-
)>m,
则2n+1>
-1,
故n>log2(
-1)-1>0,
取n0=[log2(
-1)-1]+1
=[log2(
-1)](其中[x]表示不超过x的最大整数),
则当n>n0时,Tn>m.…(14分)
即an=an-1+2n-1(n≥3)…(1分)
∴an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+a2
=2n-1+2n-2+…+22+5
=2n-1+2n-2+…+22+2+1+2
=2n+1,n≥3.…(3分)
检验知n=1,2时,结论也成立
故an=2n+1.…(4分)
(Ⅱ) ①由于bn•2n-1=
| 1 |
| (2 n+1)(2n+1 +1) |
=
| 1 |
| 2 |
| (2n+1+1)-(2n+1) |
| (2n+1)(2n+1+1) |
=
| 1 |
| 2 |
| 1 |
| 2 n+1 |
| 1 |
| 2n+1+1 |
故Tn=b1+b2•2+b3•22+…+bn•2n-1
=
| 1 |
| 2 |
| 1 |
| 1+2 |
| 1 |
| 1+22 |
| 1 |
| 1+22 |
| 1 |
| 1+23 |
| 1 |
| 2n+1 |
| 1 |
| 2n+1+1 |
=
| 1 |
| 2 |
| 1 |
| 1+2 |
| 1 |
| 2n+1+1 |
<
| 1 |
| 2 |
| 1 |
| 1+2 |
=
| 1 |
| 6 |
②若Tn>m,其中m∈(0,
| 1 |
| 6 |
| 1 |
| 2 |
| 1 |
| 1+2 |
| 1 |
| 2n+1+1 |
则2n+1>
| 3 |
| 1-6m |
故n>log2(
| 3 |
| 1-6m |
取n0=[log2(
| 3 |
| 1-6m |
=[log2(
| 3 |
| 1-6m |
则当n>n0时,Tn>m.…(14分)
点评:本题考查数列与不等式的综合运用,综合性强,难度大,计算量大,比较繁琐,容易出错.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目