题目内容

已知f(x)=x3-ax在[1,+∞)上是单调增函数,则a的最大值是______.
法一∵f(x)=x3-ax,∴f′(x)=3x2-a=3(x-
a
3
)(x+
a
3

∴f(x)=x3-ax在(-∞,-
a
3
),(
a
3
,+∞)上单调递增,
∵函数f(x)=x3-ax在[1,+∞)上单调递增,
a
3
≤1?a≤3
∴a的最大值为 3
法二:由法一得f′(x)=3x2-a,
∵函数f(x)=x3-ax在[1,+∞)上是单调增函数,
∴在[1,+∞)上,f′(x)≥0恒成立,
即a≤3x2在[1,+∞)上恒成立,
∴a≤3,
故答案为:3.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网