题目内容
函数(xR),若,则的值为
0.
解析试题分析:注意到均是奇函数,所以是奇函数,从而构造函数是奇函数,所以,另一方面,所以有.考点:函数的奇偶性的应用.
若函数的图像关于原点对称,则 。
对于定义在上的函数,有下述四个命题;①若是奇函数,则的图像关于点对称;②若对,有,则的图像关于直线对称;③若函数的图像关于直线对称,则为偶函数;④函数与函数的图像关于直线对称。其中正确命题为 .
已知直角坐标平面上任意两点,定义.当平面上动点到定点的距离满足时,则的取值范围是 .
的定义域为 ;
若函数有两个零点,则实数的取值范围 .
已知定义域为R的奇函数的导函数为,当时,若,,,则的大小关系是 .
函数的单调递减区间是________.
已知f (x)为偶函数,且f (2+x)=f (2-x),当-2≤x≤0时,f (x)=2x, an=f (n), n∈N*,则a2010的值为A.2010 B.4 D.-4