题目内容
已知| a |
| b |
| a |
| b |
| ||
| 2 |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
分析:(1)由(2
-
)⊥(2
-
)可得2
2+3
•
-2
2=0,再由
2=|
|2=5,
2=|
|2=
,可得
•
=-
.
(2)根据|
-
|2=(
-
)2=
2-2
•
+
2,运算求得结果.
| a |
| b |
| a |
| b |
| a |
| a |
| b |
| b |
| a |
| a |
| b |
| b |
| 5 |
| 4 |
| a |
| b |
| 5 |
| 2 |
(2)根据|
| a |
| b |
| a |
| b |
| a |
| a |
| b |
| b |
解答:解:(1)∵(
+2
)⊥(2
-
),∴(
+2
)•(2
-
)=0,即:2
2+3
•
-2
2=0,又
2=|
|2=5,
2=|
|2=
,∴
•
=-
.
(2)|
-
|2=(
-
)2=
2-2
•
+
2=5+5+
=
.
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| a |
| b |
| b |
| a |
| a |
| b |
| b |
| 5 |
| 4 |
| a |
| b |
| 5 |
| 2 |
(2)|
| a |
| b |
| a |
| b |
| a |
| a |
| b |
| b |
| 5 |
| 4 |
| 45 |
| 4 |
点评:本题考查两个向量的数量积公式,两个向量垂直的性质,向量的模的定义,求向量的模的方法,是一道基础题.
练习册系列答案
相关题目