题目内容

利用数学归纳法证明“(n+1)(n+2)…(n+n)=2n×1×3×…×(2n-1),n∈N*”时,从“n=k”变到“n=k+1”时,左边应增乘的因式是________.

2(2k+1)
分析:考查等式两侧的特点,写出左侧n=k和n=k+1的表达式,进行比较,即可推出左边应增乘的因式.
解答:当n=k(k∈N*)时,左式为(k+1)(k+2)(k+k);
当n=k+1时,左式为(k+1+1)•(k+1+2)••(k+1+k-1)•(k+1+k)•(k+1+k+1),
则左边应增乘的式子是=2(2k+1).
故答案为:2(2k+1)
点评:本题是基础题,考查数学归纳法证明问题的第二步,项数增加多少问题,注意表达式的形式特点,找出规律是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网