题目内容
△ABC的内角A,B,C对边分别为a,b,c,若
| ||
| 3 |
| A |
| 2 |
| A |
| 2 |
| B |
| 2 |
(1)求角B大小;
(2)设y=sinC-sinA,求y的取值范围.
分析:(1)根据正弦定理和题设条件求得B.
(2)把函数y=sinC-sinA整理得y=cos(A+
)再根据A的范围和余弦函数的单调性求得答案.
(2)把函数y=sinC-sinA整理得y=cos(A+
| π |
| 6 |
解答:解:(1)
bsin
cos
+acos2
=a.
∴
sinBsin
cos
+sinAcos2
=sinA
∴
sinB+
=1,
∴sin(B+
)=
,∴B=
(2)∵B=
,c=
-A
∴y=sinC-sinA=sin(
-A)-sinA=cos(A+
)
又0<A<
∴
<A+
<
π
∴-
<y<
.
| ||
| 3 |
| A |
| 2 |
| A |
| 2 |
| B |
| 2 |
∴
| ||
| 3 |
| A |
| 2 |
| A |
| 2 |
| B |
| 2 |
∴
| ||
| 6 |
| 1+cosB |
| 2 |
∴sin(B+
| π |
| 3 |
| ||
| 2 |
| π |
| 3 |
(2)∵B=
| π |
| 3 |
| 2π |
| 3 |
∴y=sinC-sinA=sin(
| 2π |
| 3 |
| π |
| 6 |
又0<A<
| 2π |
| 3 |
∴
| π |
| 6 |
| π |
| 6 |
| 5 |
| 6 |
∴-
| ||
| 2 |
| ||
| 2 |
点评:本题主要考查了正弦定理在实际中的应用.属基础题.
练习册系列答案
相关题目