题目内容
(1)求sin50°(1+
tan10°)的值.
(2)若α,β∈(0,
),cos(α-
)=
,sin(
-β)=-
,求cos(α+β)的值.
| 3 |
(2)若α,β∈(0,
| π |
| 2 |
| β |
| 2 |
| ||
| 2 |
| α |
| 2 |
| 1 |
| 2 |
分析:(1)先利用同角基本关系对tan10°进行化简,然后利用两角和的正弦公式化简即可求解
(2)由α,β∈(0,
),cos(α-
)=
,sin(
-β),可先求α-
β及
α-β,进而可求α+β即可
(2)由α,β∈(0,
| π |
| 2 |
| β |
| 2 |
| ||
| 2 |
| α |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
解答:解:(1)原式
(2)∵-
<-
<0∴-
<α-
<
∵cos(α-
)=
∴α-
=±
①
∵0<
<
,-
<-β<0∴-
<
-β<
∵sin(
-β)=-
∴
-β=-
②
∴①-②得
=
或0,
∴α+β=
∴cos(α+β)=cos
=-
|
|
(2)∵-
| π |
| 4 |
| β |
| 2 |
| π |
| 4 |
| β |
| 2 |
| π |
| 2 |
∵cos(α-
| β |
| 2 |
| ||
| 2 |
| β |
| 2 |
| π |
| 6 |
∵0<
| α |
| 2 |
| π |
| 4 |
| π |
| 2 |
| π |
| 2 |
| α |
| 2 |
| π |
| 4 |
∵sin(
| α |
| 2 |
| 1 |
| 2 |
| α |
| 2 |
| π |
| 6 |
∴①-②得
| α+β |
| 2 |
| π |
| 3 |
∴α+β=
| 2π |
| 3 |
∴cos(α+β)=cos
| 2π |
| 3 |
| 1 |
| 2 |
点评:本题主要考查了两角和的三角公式、同角平方关系的简单应用,属于公式的灵活应用.
练习册系列答案
相关题目