题目内容
设函数
f(x)=![]()
(1)求f(log2
)与f(log
)的值;
(2)求满足f(x)=2的x的值;
(3)求f(x)的最小值.
解:(1)∵log2
<log2 2=1,
∴f(log2
)=2-log2
=2log2
=
.
∵log
=log
(
)3=3>1,
∴f(log
)=f(3)=log3
·log3
=log3 1·log3 3-1=0×(-1)=0.
故f(log2
)与f(log
)的值分别为
,0.
(2)当x≤1时,f(x)=2-x=2,解得x=-1,符合题意,当x>1时,f(x)=log3
·log3
=2
即(log3x-1)(log3x-2)=2,
∴log
x-3log3x=0,
∴log3x=3或log3x=0.
由log3x=0得x=1,不合题意(舍去).
由log3x=3,得x=33=27>1符合题意.
综上可知,所求x的值为-1或27.
(3)当x≤1时,f(x)=2-x=(
)x≥(
)1,
即f(x)min=
.
当x>1时,f(x)=(log3x-1)(log3x-2).
令log3x=t,则t>0,
∴y=(t-1)(t-2)=(t-
)2-
,
∴当t=
>0时,ymin=-
<
.
∴f(x)的最小值为-
.
练习册系列答案
相关题目