题目内容
(1)求证:D1F⊥平面ADE;
(2)cos?
| EF |
| CB1 |
分析:以DA、DC、DD1为x,y,z轴,建立直角坐标系,
(1)表示出
,
,
,
•
=0,
•
=0,推出
⊥
,
⊥
.证明D1F⊥平面ADE;
(2)以DA、DC、DD1为x,y,z轴,建立如图所示的直角坐标系,求出
,
,利用?
,
?=
求出cos?
,
?
(1)表示出
| D1F |
| D A |
| AE |
| D1F |
| DA |
| D1F |
| AE |
| D1F |
| DA |
| D1F |
| AE |
(2)以DA、DC、DD1为x,y,z轴,建立如图所示的直角坐标系,求出
| CB1 |
| EF |
| EF |
| CB1 |
| ||||
|
|
| EF |
| CB1 |
解答:
解:建立如图所示的直角坐标系,
(1)证明:不妨设正方体的棱长为1,
则D(0,0,0),A(1,0,0),D1(0,0,1),
E(1,1,
),F(0,
,0),
则
=(0,
,-1),
=(1,0,0),
=(0,1,
),
则
•
=0,
•
=0,
∴
⊥
,
⊥
.∴D1F⊥平面ADE;
(2)解:B1(1,1,1),C(0,1,0),
故
=(1,0,1),
=(-1,-
,-
),
∴
•
=-1+0-
=-
,|
|=
=
,|
|=
,
则cos?
,
?=
=
=-
.?
,
?=150°.
(1)证明:不妨设正方体的棱长为1,
则D(0,0,0),A(1,0,0),D1(0,0,1),
E(1,1,
| 1 |
| 2 |
| 1 |
| 2 |
则
| D1F |
| 1 |
| 2 |
| D A |
| AE |
| 1 |
| 2 |
则
| D1F |
| DA |
| D1F |
| AE |
∴
| D1F |
| DA |
| D1F |
| AE |
(2)解:B1(1,1,1),C(0,1,0),
故
| CB1 |
| EF |
| 1 |
| 2 |
| 1 |
| 2 |
∴
| EF |
| CB1 |
| 1 |
| 2 |
| 3 |
| 2 |
| EF |
1+
|
|
| CB1 |
| 2 |
则cos?
| EF |
| CB1 |
| ||||
|
|
-
| ||||||
|
| ||
| 2 |
| EF |
| CB1 |
点评:本题考查用空间向量求直线间的夹角、距离,向量语言表述线面的垂直、平行关系,考查计算能力,转化思想,是中档题.
练习册系列答案
相关题目