题目内容
已知函数f(x)=
(x∈R),若x1+x2=1,则f(x1)+f(x2)=
;若n∈N*,则f(
)+f(
)+…+f(
)+f(
)=
-
-
.
| 1 |
| 4x+2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
| n |
| n |
| n |
| 4 |
| 1 |
| 12 |
| n |
| 4 |
| 1 |
| 12 |
分析:由已知中函数f(x)=
(x∈R),我们结合x1+x2=1,可得f(x1)=
,f(x2)=
,代入计算即可得到f(x1)+f(x2)的值,进而根据结论,利用分组求和法,即可求出f(
)+f(
)+…+f(
)+f(
)的值.
| 1 |
| 4x+2 |
| 1 |
| 4x1+2 |
| 1 |
| 4(1-x1)+2 |
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
| n |
| n |
解答:解:∵函数f(x)=
(x∈R),
∴f(x1)=
又∵x1+x2=1,x2=1-x1,
∴f(x2)=
f(x1)+f(x2)=
+
=
+
=
=
∴f(
)+f(
)+…+f(
)+f(
)
=[f(
)+f(
)]+[f(
)+f(
)]+…+f(
)
=
•
+f(1)
=
-
故答案为:
;
-
.
| 1 |
| 4x+2 |
∴f(x1)=
| 1 |
| 4x1+2 |
又∵x1+x2=1,x2=1-x1,
∴f(x2)=
| 1 |
| 4(1-x1)+2 |
f(x1)+f(x2)=
| 1 |
| 4x1+2 |
| 1 |
| 4(1-x1)+2 |
| 2 |
| 2•4x1+4 |
| 4x1 |
| 4 +2•4x1 |
| 2+4x1 |
| 4 +2•4x1 |
| 1 |
| 2 |
∴f(
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
| n |
| n |
=[f(
| 1 |
| n |
| n-1 |
| n |
| 2 |
| n |
| n-1 |
| n |
| n |
| n |
=
| n-1 |
| 2 |
| 1 |
| 2 |
=
| n |
| 4 |
| 1 |
| 12 |
故答案为:
| 1 |
| 2 |
| n |
| 4 |
| 1 |
| 12 |
点评:本题考查的知识点是求函数的值,数列求和,其中求出当x1+x2=1时,f(x1)+f(x2)=
,是解答本题的关键.
| 1 |
| 2 |
练习册系列答案
相关题目