题目内容

如图,直三棱柱ABC-A1B1C1中,△ABC是等边三角形,D是BC的中点.
(Ⅰ)求证:直线A1D⊥B1C1
(Ⅱ)判断A1B与平面ADC1的位置关系,并证明你的结论.
精英家教网
证明:(Ⅰ)在直三棱柱ABC-A1B1C1中,AA1⊥面ABC,∴AA1⊥BC,
在等边△ABC中,D是BC中点,∴AD⊥BC
∵在平面A1AD中,A1A∩AD=A,∴BC⊥面A1AD
又∵A1D?面A1AD,∴A1D⊥BC
在直三棱柱ABC-A1B1C1中,四边形BCC1B1是平行四边形,∴B1C1BC
∴A1D⊥B1C1
(Ⅱ) 在直三棱柱ABC-A1B1C1中,四边形ACC1A1是平行四边形,
在平行四边形ACC1A1中联结A1C,交于AC1点O,连接DO.
故O为A1C中点.
在三角形A1CB中,D 为BC中点,O为A1C中点,∴DOA1B.
因为DO?平面DAC1,A1B?平面DAC1,∴A1B面ADC1
∴A1B与面ADC1平行.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网