题目内容
函数f(x)=log2(x2+2x)的单调递减区间为______.
由题意,函数f(x)=log2(x2+2x)是一个复合函数,外层函数是y=log2t,内层函数是t=x2+2x
令 x2+2x>0解得x>0或x<-2,即函数f(x)=log2(x2+2x)的定义域是(-∞,-2)∪(0,+∞)
由于外层函数y=log2t是增函数,内层函数t=x2+2x在(-∞,-2)上是减函数,在(0,+∞)上是增函数
故复合函数f(x)=log2(x2+2x)在(-∞,-2)上是减函数,在(0,+∞)上是增函数
综上知函数f(x)=log2(x2+2x)的单调递减区间为(-∞,-2)
故答案为(-∞,-2)
令 x2+2x>0解得x>0或x<-2,即函数f(x)=log2(x2+2x)的定义域是(-∞,-2)∪(0,+∞)
由于外层函数y=log2t是增函数,内层函数t=x2+2x在(-∞,-2)上是减函数,在(0,+∞)上是增函数
故复合函数f(x)=log2(x2+2x)在(-∞,-2)上是减函数,在(0,+∞)上是增函数
综上知函数f(x)=log2(x2+2x)的单调递减区间为(-∞,-2)
故答案为(-∞,-2)
练习册系列答案
相关题目
已知函数f(x)=log -
(x2-ax+3a)在[2,+∞)上是减函数,则实数a的范围是( )
| 1 |
| 2 |
| A、(-∞,4] |
| B、(-4,4] |
| C、(0,12) |
| D、(0,4] |