题目内容

设数列{an}的前n项和Sn=,n=1,2,3,….

(1)求首项a1与通项an;

解:Sn=an-×2n+1+,n=1,2,3,…,

∴a1=S1=a1-×4+.

解得a1=2.

又由Sn=an-×2n+1+,得Sn-1=an-1-×2n+,n=2,3,…,

两式相减,得an=Sn-Sn-1=(an-an-1)-(2n+1-2n),

整理,得(an+2n)=4(an-1+2n-1),n=2,3,…,

即数列{an+2n}是以a1+2=4为首项,公比为4的等比数列,

即an+2n=4×4n-1=4n.

∴an=4n-2n,n=1,2,3,….

(2)设Tn=,n=1,2,3,…,证明.

证明:由an=4n-2n,得Sn=(4n-2n)- ×2n+1+= (2n+1-1)(2n-1).

Tn=.

.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网