题目内容
设数列{an}的前n项和Sn=(1)求首项a1与通项an;
解:Sn=
an-
×2n+1+
,n=1,2,3,…,
∴a1=S1=
a1-
×4+
.
解得a1=2.
又由Sn=
an-
×2n+1+
,得Sn-1=
an-1-
×2n+
,n=2,3,…,
两式相减,得an=Sn-Sn-1=
(an-an-1)-
(2n+1-2n),
整理,得(an+2n)=4(an-1+2n-1),n=2,3,…,
即数列{an+2n}是以a1+2=4为首项,公比为4的等比数列,
即an+2n=4×4n-1=4n.
∴an=4n-2n,n=1,2,3,….
(2)设Tn=
,n=1,2,3,…,证明
.
证明:由an=4n-2n,得Sn=
(4n-2n)-
×2n+1+
=
(2n+1-1)(2n-1).
Tn=
.
∴
.
练习册系列答案
相关题目