ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êýf(x)=x+
(t£¾0)ºÍµãP£¨1£¬0£©£¬¹ýµãP×÷ÇúÏßy=f£¨x£©µÄÁ½ÌõÇÐÏßPM£¬PN£¬Çеã·Ö±ðΪM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£®
£¨1£©ÇóÖ¤£ºx1£¬x2ÊǹØÓÚxµÄ·½³Ìx2+2tx-t=0µÄÁ½¸ù£»
£¨2£©Éè|MN|=g£¨t£©£¬Çóº¯Êýg£¨t£©£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÈôÔÚÇø¼ä[2£¬16]ÄÚ×Ü´æÔÚm+1¸öʵÊýa1£¬a2£¬¡£¬am+1£¬Ê¹µÃ²»µÈʽg£¨a1£©+g£¨a2£©+¡+g£¨am£©£¼g£¨am+1£©³ÉÁ¢£¬ÇóʵÊýmµÄ×î´óÖµ£®
| t | x |
£¨1£©ÇóÖ¤£ºx1£¬x2ÊǹØÓÚxµÄ·½³Ìx2+2tx-t=0µÄÁ½¸ù£»
£¨2£©Éè|MN|=g£¨t£©£¬Çóº¯Êýg£¨t£©£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÈôÔÚÇø¼ä[2£¬16]ÄÚ×Ü´æÔÚm+1¸öʵÊýa1£¬a2£¬¡£¬am+1£¬Ê¹µÃ²»µÈʽg£¨a1£©+g£¨a2£©+¡+g£¨am£©£¼g£¨am+1£©³ÉÁ¢£¬ÇóʵÊýmµÄ×î´óÖµ£®
·ÖÎö£º£¨1£©Óõ¼ÊýÖµÓëÇÐÏßµÄбÂÊÏàµÈ£¬Çó³öÇеãºá×ø±êµÄ¹ØÏµ£¬ÅжÏÊÇ·½³Ìx2+2tx-t=0µÄÁ½¸ù¼´¿É£»
£¨2£©Çó¹ýÇеãµÄÇÐÏß·½³Ì£¬ÕÒ³öÁ½ÇÐµã¹ØÏµ£¬ÔÙÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽÇó½â¼´¿É£»
£¨3£©ÀûÓú¯ÊýµÄµ¥µ÷ÐÔת»¯Îªºã³ÉÁ¢ÎÊÌ⣮
£¨2£©Çó¹ýÇеãµÄÇÐÏß·½³Ì£¬ÕÒ³öÁ½ÇÐµã¹ØÏµ£¬ÔÙÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽÇó½â¼´¿É£»
£¨3£©ÀûÓú¯ÊýµÄµ¥µ÷ÐÔת»¯Îªºã³ÉÁ¢ÎÊÌ⣮
½â´ð£º½â£º£¨1£©º¯Êýf(x)=x+
(t£¾0)¿ÉµÃf¡ä£¨x£©=1-
£¬Çе㣨x£¬x+
£©£¬ËùÒÔ
=1-
£¬
¿ÉµÃx2+2tx-t=0£¬ÏÔÈ»·½³ÌµÄÁ½¸ö¸ù¾ÍÊÇÇеã·Ö±ðΪM£¨x1£¬y1£©£¬N£¨x2£¬y2£©µÄºá×ø±ê£¬
ËùÒÔx1£¬x2ÊǹØÓÚxµÄ·½³Ìx2+2tx-t=0µÄÁ½¸ù£»
£¨2£©ÒòΪM¡¢NÁ½µãµÄºá×ø±ê·Ö±ðΪx1¡¢x2£¬
ÓÖf¡ä£¨x£©=1-
£¬¡àÇÐÏßPMµÄ·½³ÌΪ£ºy-£¨x1+
£©=£¨1-
£©£¨x-x1£©£®
ÓÖ¡ßÇÐÏßPM¹ýµãP£¨1£¬0£©£¬¡àÓÐ0-£¨x1+
£©=£¨1-
£©£¨1-x1£©£®
¼´x12+2tx1-t=0£®£¨1£©
ͬÀí£¬ÓÉÇÐÏßPNÒ²¹ýµã£¨1£¬0£©£¬µÃx22+2tx2-t=0£®£¨2£©
ÓÉ£¨1£©¡¢£¨2£©£¬¿ÉµÃx1£¬x2ÊÇ·½³Ìx2+2tx-t=0µÄÁ½¸ù£¬
¡à
£¨*£©
|MN|=
=
=
°Ñ£¨*£©Ê½´úÈ룬µÃ|MN|=2
£¬
Òò´Ë£¬º¯Êýg£¨t£©µÄ±í´ïʽΪg£¨t£©=2
£¨t£¾0£©
£¨3£©Ò×Öªg£¨t£©ÔÚÇø¼ä[2£¬16]ÉÏΪÔöº¯Êý£¬
¡àg£¨2£©¡Üg£¨ai£©£¨i=1£¬2£¬m+1£©£®
Ôòm•g£¨2£©¡Üg£¨a1£©+g£¨a2£©+¡+g£¨am£©£®
¡ßg£¨a1£©+g£¨a2£©+¡+g£¨am£©£¼g£¨am+1£©¶ÔÒ»ÇÐÕýÕûÊýn³ÉÁ¢£¬
¡à²»µÈʽm•g£¨2£©£¼g£¨16£©¶ÔÒ»ÇеÄÕýÕûÊýnºã³ÉÁ¢m2
£¼2
£¬
¼´m£¼
=
¶ÔÒ»ÇеÄÕýÕûÊýnºã³ÉÁ¢
ÓÉÓÚmΪÕýÕûÊý£¬¡àm¡Ü6£®ÓÖµ±m=6ʱ£¬´æÔÚa1=a2=am=2£¬am+1=16£¬¶ÔËùÓеÄnÂú×ãÌõ¼þ£®
Òò´Ë£¬mµÄ×î´óֵΪ6£®
| t |
| x |
| t |
| x2 |
| t |
| x |
x+
| ||
| x-1 |
| t |
| x2 |
¿ÉµÃx2+2tx-t=0£¬ÏÔÈ»·½³ÌµÄÁ½¸ö¸ù¾ÍÊÇÇеã·Ö±ðΪM£¨x1£¬y1£©£¬N£¨x2£¬y2£©µÄºá×ø±ê£¬
ËùÒÔx1£¬x2ÊǹØÓÚxµÄ·½³Ìx2+2tx-t=0µÄÁ½¸ù£»
£¨2£©ÒòΪM¡¢NÁ½µãµÄºá×ø±ê·Ö±ðΪx1¡¢x2£¬
ÓÖf¡ä£¨x£©=1-
| t |
| x2 |
| t |
| x1 |
| t | ||
|
ÓÖ¡ßÇÐÏßPM¹ýµãP£¨1£¬0£©£¬¡àÓÐ0-£¨x1+
| t |
| x1 |
| t | ||
|
¼´x12+2tx1-t=0£®£¨1£©
ͬÀí£¬ÓÉÇÐÏßPNÒ²¹ýµã£¨1£¬0£©£¬µÃx22+2tx2-t=0£®£¨2£©
ÓÉ£¨1£©¡¢£¨2£©£¬¿ÉµÃx1£¬x2ÊÇ·½³Ìx2+2tx-t=0µÄÁ½¸ù£¬
¡à
|
|MN|=
(x1-x2)2+(x1+
|
=
(x1-x2)2[1+(1-
|
=
[(x1+x2)2-4x1x2][1+(1-
|
°Ñ£¨*£©Ê½´úÈ룬µÃ|MN|=2
| 5t2+5t |
Òò´Ë£¬º¯Êýg£¨t£©µÄ±í´ïʽΪg£¨t£©=2
| 5t2+5t |
£¨3£©Ò×Öªg£¨t£©ÔÚÇø¼ä[2£¬16]ÉÏΪÔöº¯Êý£¬
¡àg£¨2£©¡Üg£¨ai£©£¨i=1£¬2£¬m+1£©£®
Ôòm•g£¨2£©¡Üg£¨a1£©+g£¨a2£©+¡+g£¨am£©£®
¡ßg£¨a1£©+g£¨a2£©+¡+g£¨am£©£¼g£¨am+1£©¶ÔÒ»ÇÐÕýÕûÊýn³ÉÁ¢£¬
¡à²»µÈʽm•g£¨2£©£¼g£¨16£©¶ÔÒ»ÇеÄÕýÕûÊýnºã³ÉÁ¢m2
| 5¡Á4+5¡Á2 |
| 5¡Á162+5¡Á16 |
¼´m£¼
|
|
ÓÉÓÚmΪÕýÕûÊý£¬¡àm¡Ü6£®ÓÖµ±m=6ʱ£¬´æÔÚa1=a2=am=2£¬am+1=16£¬¶ÔËùÓеÄnÂú×ãÌõ¼þ£®
Òò´Ë£¬mµÄ×î´óֵΪ6£®
µãÆÀ£º±¾ÌâµÚÒ»ÎʱȽϻù´¡£¬¶þÈýÎʱȽϸ´ÔÓ£¬¿¼ÇÐÏßÎÊÌ⣬ºÍÊýÁÐÎÊÌ⣬ÓÖÉøÍ¸Á˺ã³ÉÁ¢Ë¼Ï룬´ËÌâ±È½ÏУ¬ËäÊÇѹÖáÌ⵫²¢²»ÏñÒÔÍùѹÖáÌâµÄ˼·£¬ÓÐÍ»ÆÆÓд´Ð£¬×ÐϸÉóÌâÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿