题目内容
设函数f(x)=cos(2x-| π |
| 3 |
(Ⅰ)求f(x)在(0,
| π |
| 2 |
(Ⅱ)记△ABC的内角A,B,C的对边长分别为a,b,c,若f(A)=1,a=
| 7 |
分析:(I) 利用两角和差的三角公式化简函数的解析式,根据角的范围及函数的单调性求出函数的值域.
(II)由 f(A)=1 求得sin(2A-
)=1,根据-
<2A-
<
求出A=
,利用余弦定理求出c的值.
(II)由 f(A)=1 求得sin(2A-
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| 11π |
| 6 |
| π |
| 3 |
解答:解:(I)f(x)=cos(2x-
)-cos2x=cos2xcos
+sin2xsin
-cos2x
=
sin2x-
cos2x=sin(2x-
).∵x∈(0,
),∴2x-
∈(-
,
),
∴sin(2x-
)∈(-
,1],即f(x)在(0,
)的值域为(-
,1].
(II)由(I)可知,f(A)=sin(2A-
),∴sin(2A-
)=1.
∵0<A<π,∴-
<2A-
<
,∴2A-
=
,A=
.
∵a2=b2+c2-2bccosA,把a=
,b=3代入,得到c2-3c+2=0,∴c=1或c=2.
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
=
| ||
| 2 |
| 1 |
| 2 |
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
∴sin(2x-
| π |
| 6 |
| 1 |
| 2 |
| π |
| 2 |
| 1 |
| 2 |
(II)由(I)可知,f(A)=sin(2A-
| π |
| 6 |
| π |
| 6 |
∵0<A<π,∴-
| π |
| 6 |
| π |
| 6 |
| 11π |
| 6 |
| π |
| 6 |
| π |
| 2 |
| π |
| 3 |
∵a2=b2+c2-2bccosA,把a=
| 7 |
点评:本题考查两角和差的三角公式的应用,余弦定理,以及正弦函数的值域,求出角A的大小是解题的关键.
练习册系列答案
相关题目