题目内容
设y=f(x)为R上的奇函数,y=g(x)为R上的偶函数,且g(x)=f(x+1),g(0)=2.则f(x)=________.(只需写出一个满足条件的函数解析式即可)
2sin
分析:根据f(x)、g(x)的奇偶性可推出f(x)的周期,由f(x)的周期性、奇偶性即可找到满足条件的一个函数.
解答:因为f(x)是奇函数,g(x)是偶函数,
所以f(x+1)=g(x)=g(-x)=f(-x+1)=-f(x-1),
所以f(x+1)=-f(x-1),
令t=x+1,则x=t-1,所以f(t)=-f(t-2)=f(t-4),
所以f(x)是一个周期为4的周期函数,同时为奇函数,
而
满足条件,
故答案为:2sin
.
点评:本题考查函数的奇偶性、周期性及函数解析式的求解,属中档题,解决本题的关键是运用函数的奇偶性推出函数f(x)的周期.
分析:根据f(x)、g(x)的奇偶性可推出f(x)的周期,由f(x)的周期性、奇偶性即可找到满足条件的一个函数.
解答:因为f(x)是奇函数,g(x)是偶函数,
所以f(x+1)=g(x)=g(-x)=f(-x+1)=-f(x-1),
所以f(x+1)=-f(x-1),
令t=x+1,则x=t-1,所以f(t)=-f(t-2)=f(t-4),
所以f(x)是一个周期为4的周期函数,同时为奇函数,
而
故答案为:2sin
点评:本题考查函数的奇偶性、周期性及函数解析式的求解,属中档题,解决本题的关键是运用函数的奇偶性推出函数f(x)的周期.
练习册系列答案
相关题目