题目内容

高为
2
的四棱锥S-ABCD的底面是边长为1的正方形,点S,A,B,C,D均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为(  )
A.
10
2
B.
2
+
3
2
C.
3
2
D.
2
由题意可知ABCD 是小圆,对角线长为
2
,四棱锥的高为
2
,点S,A,B,C,D均在半径为1的同一球面上,球的直径为2,所以四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径,所以底面ABCD的中心与顶点S之间的距离为:
(
2
)
2
+(
2
2
)
2
=
10
2

故选A
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网