题目内容
表中数阵称为“森德拉姆筛”,其特点是每行每列都是等差数列,则表中数字206共出现________次.
| 2 | 3 | 4 | 5 | 6 | 7 | … |
| 3 | 5 | 7 | 9 | 11 | 13 | … |
| 4 | 7 | 10 | 13 | 16 | 19 | … |
| 5 | 9 | 13 | 17 | 21 | 25 | … |
| 6 | 11 | 16 | 21 | 26 | 31 | … |
| 7 | 13 | 19 | 25 | 31 | 37 | … |
| … | … | … | … | … | … | … |
4
分析:第1行数组成的数列A1j(j=1,2,…)是以2为首项,公差为1的等差数列,第j列数组成的数列A1j(i=1,2,)是以j+1为首项,公差为j的等差数列,求出通项公式,可以求出结果.
解答:第i行第j列的数记为Aij.那么每一组i与j的解就是表中一个数.
因为第一行数组成的数列A1j(j=1,2,…)是以2为首项,公差为1的等差数列,
所以A1j=2+(j-1)×1=j+1,
所以第j列数组成的数列A1j(i=1,2,…)是以j+1为首项,公差为j的等差数列,
所以Aij=(j+1)+(i-1)×j=ij+1.
令Aij=ij+1=206,
即ij=205=1×205=5×41=41×5=205×1,
所以,表中206共出现4次.
故答案为:4.
点评:本题考查了行列模型的等差数列的应用,要求利用首项和公差写出等差数列的通项公式,灵活运用通项公式求值,是中档题目.
分析:第1行数组成的数列A1j(j=1,2,…)是以2为首项,公差为1的等差数列,第j列数组成的数列A1j(i=1,2,)是以j+1为首项,公差为j的等差数列,求出通项公式,可以求出结果.
解答:第i行第j列的数记为Aij.那么每一组i与j的解就是表中一个数.
因为第一行数组成的数列A1j(j=1,2,…)是以2为首项,公差为1的等差数列,
所以A1j=2+(j-1)×1=j+1,
所以第j列数组成的数列A1j(i=1,2,…)是以j+1为首项,公差为j的等差数列,
所以Aij=(j+1)+(i-1)×j=ij+1.
令Aij=ij+1=206,
即ij=205=1×205=5×41=41×5=205×1,
所以,表中206共出现4次.
故答案为:4.
点评:本题考查了行列模型的等差数列的应用,要求利用首项和公差写出等差数列的通项公式,灵活运用通项公式求值,是中档题目.
练习册系列答案
相关题目
表中数阵称为“森德拉姆筛”,其特点是每行每列都是等差数列,则表中数字206共出现 次.
| 2 | 3 | 4 | 5 | 6 | 7 | … |
| 3 | 5 | 7 | 9 | 11 | 13 | … |
| 4 | 7 | 10 | 13 | 16 | 19 | … |
| 5 | 9 | 13 | 17 | 21 | 25 | … |
| 6 | 11 | 16 | 21 | 26 | 31 | … |
| 7 | 13 | 19 | 25 | 31 | 37 | … |
| … | … | … | … | … | … | … |
表中数阵称为“森德拉姆筛”,其特点是每行每列都是等差数列,则表中数字206共出现 次.
| 2 | 3 | 4 | 5 | 6 | 7 | … |
| 3 | 5 | 7 | 9 | 11 | 13 | … |
| 4 | 7 | 10 | 13 | 16 | 19 | … |
| 5 | 9 | 13 | 17 | 21 | 25 | … |
| 6 | 11 | 16 | 21 | 26 | 31 | … |
| 7 | 13 | 19 | 25 | 31 | 37 | … |
| … | … | … | … | … | … | … |
表中数阵称为“森德拉姆筛”,其特点是每行每列都是等差数列,则表中数字206共出现 次.
| 2 | 3 | 4 | 5 | 6 | 7 | … |
| 3 | 5 | 7 | 9 | 11 | 13 | … |
| 4 | 7 | 10 | 13 | 16 | 19 | … |
| 5 | 9 | 13 | 17 | 21 | 25 | … |
| 6 | 11 | 16 | 21 | 26 | 31 | … |
| 7 | 13 | 19 | 25 | 31 | 37 | … |
| … | … | … | … | … | … | … |