题目内容
已知各项均为正数的数列{an}满足:| a1+2a2+3a3+…+nan |
| n |
| (a1+1)an |
| 3 |
(I)求a1,a2,a3的值,猜测an的表达式并给予证明;
(II)求证:sin
| π |
| an |
| 2 |
| an |
(III)设数列{sin
| π |
| anan+1 |
| 1 |
| 3 |
| π |
| 2 |
分析:(Ⅰ)令n=1,2,3,分别求出a1,a2,a3,然后仔细观察,总结规律,猜想:an=n+1(n∈N*),再用用数字归纳法证明.
(Ⅱ)构造函数f(x)=sinx-
x(0<x<
),求导,利用y=cosx的单调性知f(x)在(0,
]内有且只有一个极大值点,从而可证;
(III)由Sn=sin
+sin
+…+sin
,结合sin
>
,利用裂项求和>2(
-
+
-
+…+
-
)=2(
-
)≥
,可得对一切n∈N*,Sn>
.利用在(0,
)内sinx<x,可证右边.
(Ⅱ)构造函数f(x)=sinx-
| 2 |
| π |
| π |
| 2 |
| π |
| 2 |
(III)由Sn=sin
| π |
| 2•3 |
| π |
| 3•4 |
| π |
| (n+1)•(n+2) |
| π |
| anan+1 |
| 2 |
| anan+1 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| n+2 |
| 1 |
| 3 |
| 1 |
| 3 |
| π |
| 2 |
解答:解:(Ⅰ)a1=2,a2=3,a3=4,猜测:an=n+1
下用数学归纳法
①当n=1时,a1=1+1=2,猜想成立;
②假设当n=k(k≥1)时猜想成立,即ak=k+1
由条件a1+2a2+3a3+…+nan=
∴a1+2a2+3a3+…+(n-1)an-1=
(n≥2)
两式相减得:nan=
-
则当n=k+1时,(k+1)ak+1=
-
?
-2ak+1-k(k+2)=0∴ak+1=k+2即当n=k+1时,猜想也成立
故对一切的n∈N*,an=n+1成立
(Ⅱ)设f(x)=sinx-
x(0<x<
)
由f′(x)=cosx-
=0?x=arccos
由y=cosx的单调性知f(x)在(0,
]内有且只有一个极大值点,
且f(0)=f(
)=0∴在(0,
)内f(x)>0
即sinx>
x(0<x<
).
令x=
,当n≥2时有
∈(0,
),∴sin
>
又当n=1时,
=
,∴sin
=
∴sin
≥
(n∈N*)
(Ⅲ)∵anan+1≥6,∴
∈(0,
)
由(Ⅱ)可知sin
>
∴Sn=sin
+sin
+…+sin
>2(
-
+
-
+…+
-
)=2(
-
)≥
即对一切n∈N*,Sn>
.
又∵在(0,
)内sinx<x∴Sn=sin
+sin
+…+sin
<π(
-
+
-
+…+
-
)=π(
-
)<
即对一切n∈N*,Sn<
.∴
<Sn<
.
下用数学归纳法
①当n=1时,a1=1+1=2,猜想成立;
②假设当n=k(k≥1)时猜想成立,即ak=k+1
由条件a1+2a2+3a3+…+nan=
| n(an+1)an |
| 3 |
| (n-1)(an-1+1)an-1 |
| 3 |
两式相减得:nan=
| n(an+1)an |
| 3 |
| (n-1)(an-1+1)an-1 |
| 3 |
则当n=k+1时,(k+1)ak+1=
| (k+1)(ak+1+1) |
| 3 |
| k(ak+1)ak |
| 3 |
| a | 2 k+1 |
故对一切的n∈N*,an=n+1成立
(Ⅱ)设f(x)=sinx-
| 2 |
| π |
| π |
| 2 |
由f′(x)=cosx-
| 2 |
| π |
| 2 |
| π |
由y=cosx的单调性知f(x)在(0,
| π |
| 2 |
且f(0)=f(
| π |
| 2 |
| π |
| 3 |
即sinx>
| 2 |
| π |
| π |
| 2 |
令x=
| π |
| an |
| π |
| an |
| π |
| 2 |
| π |
| an |
| 2 |
| an |
又当n=1时,
| π |
| an |
| π |
| 2 |
| π |
| an |
| 2 |
| an |
| π |
| an |
| 2 |
| an |
(Ⅲ)∵anan+1≥6,∴
| 1 |
| anan+1 |
| π |
| 2 |
由(Ⅱ)可知sin
| π |
| anan+1 |
| 2 |
| anan+1 |
| π |
| 2•3 |
| π |
| 3•4 |
| π |
| (n+1)•(n+2) |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| n+2 |
| 1 |
| 3 |
即对一切n∈N*,Sn>
| 1 |
| 3 |
又∵在(0,
| π |
| 2 |
| π |
| 2•3 |
| π |
| 3•4 |
| π |
| (n+1)•(n+2) |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| n+2 |
| π |
| 2 |
即对一切n∈N*,Sn<
| π |
| 2 |
| 1 |
| 3 |
| π |
| 2 |
点评:本题主要考查数列与不等式的综合,考查放缩法的思想的运用.综合性强
练习册系列答案
相关题目