题目内容

定义在R上的可导函数f(x)=x2+2xf′(2)+15,在闭区间[0,m]上有最大值15,最小值-1,则m的取值范围是(  )
分析:先求f'(2),从而确定f(x)的解析式,再根据最值和区间端点处的函数值确定m的范围
解答:解:函数f(x)=x2+2xf′(2)+15的导函数为f'(x)=2x+2f'(2)
∴f'(2)=4+2f'(2)
∴f'(2)=-4
∴f(x)=x2-8x+15,且对称轴为x=4
又在闭区间[0,m]上的最大值15,最小值-1,且f(0)=15,f(4)=-1
∴[0,4]⊆[0,m],且f(m)≤f(0)=15
∴4≤m≤8
故选D
点评:本题考查二次函数的最值问题,要注意区间与对称轴的位置关系.属简单题
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网