题目内容

已知两圆的方程分别是(x+1)2+(y-1)2=4,(x-2)2+(y-1)2=1,则这两个圆的位置关系是(  )
分析:要判断两圆的位置关系,只需求圆心距离,当圆心距离大于半径之和时,两圆外离,当圆心距离等于半径之和时,两圆外切,当圆心距离小于半径之和,大于半径之差时,两圆相交,当圆心距离等于半径之差时,两圆内切,当圆心距离小于半径之差时,两圆内含.
解答:解:∵圆(x+1)2+(y-1)2=4的圆心坐标为(-1,1),半径r1=2
圆(x-2)2+(y-1)2=1的圆心坐标为(2,1),半径r2=1
两圆心距离d=
(-1-2)2+(1-1)2
=3=r1+r2
∴两圆的位置关系是外切
故答案为C
点评:本题考查了圆与圆位置关系的判断,只需求圆心间的距离,再与半径的和差比较即可.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网