题目内容

在△ABC中,角A,B,C所对边分别是a,b,c,且3bsinC-5csinBcosA=0
(1)求sinA;
(2)若tan(A-B)=-
2
11
,求tanC.
(1)由正弦定理
b
sinB
=
c
sinC
得:bsinC=csinB.
又3bsinC-5csinBcosA=0,
∴bsinC(3-5cosA)=0,
∵bsinC≠0,∴3-5cosA=0,即cosA=
3
5

又A∈(0,π),
sinA=
1-cos2A
=
4
5
;…(4分)
(2)由(1)知cosA=
3
5
sinA=
4
5

tanA=
4
3

因为tan(A-B)=-
2
11

所以tanB=tan[A-(A-B)]=
tanA-tan(A-B)
1+tanA•tan(A-B)
=
4
3
-(-
2
11
)
1+
4
3
×(-
2
11
)
=2

所以tanC=-tan(A+B)=-
tanA+tanB
1-tanAtanB
=-
4
3
+2
1-
4
3
×2
=2
.…(8分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网