题目内容

已知数列{an}满足:a1=1,且对任意n∈N*都有
1
a1
+
1
a2
+…+
1
an
=
1
2
anan+1

(Ⅰ)求a2,a3的值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)证明:
a1a2
+
a2a3
+…+
anan+1
=
an+1
an
(n∈N*).
分析:(Ⅰ)由已知,
1
a1
=
1
2
a1a2
;得a2=
1
4
1
a1
+
1
a2
=
1
2
a2a3
.由此可知a3=
1
9

(Ⅱ)由题意知
1
a1
+
1
a2
++
1
an
=
1
2
anan+1
1
a1
+
1
a2
++
1
an-1
=
1
2
an-1an
1
an+1 
-
1
an-1
  =2
,由此可知an=
1
n2

(Ⅲ)由题意知
a1a2
+
a2a3
++
anan+1
1
1×2
+
1
2×3
++
1
n(n+1)
=
1
1
-
1
2
+
1
2
-
1
3
++
1
n
-
1
n+1
=1-
1
n+1
=
n
n+1
,由此可知
a1a2
+
a2a3
+…+
anan+1
=
an+1
an
(n∈N*).
解答:解:(Ⅰ)由已知,
1
a1
=
1
2
a1a2
;得a2=
1
4
1
a1
+
1
a2
=
1
2
a2a3
;得a3=
1
9
(2分)
(Ⅱ)当n≥2时,
1
a1
+
1
a2
++
1
an
=
1
2
anan+1
;①
1
a1
+
1
a2
++
1
an-1
=
1
2
an-1an
;②
①-②得:
1
an
=
1
2
anan+1
-
1
2
an-1an
;(4分)
1
an+1 
-
1
an-1
  =2

∴数列{
1
a2n-1
},?{
1
a2n
}
皆为等差数列(6分)
1
a2n-1
=
1
a1
+(n-1)•2=2n-1
1
a2n
=
1
a2
+(n-1)•2=2n
(8分)
综上,
1
an
=n

an=
1
n2
.(9分)
(Ⅲ)
a1a2
+
a2a3
++
anan+1
1
1×2
+
1
2×3
++
1
n(n+1)
=
1
1
-
1
2
+
1
2
-
1
3
++
1
n
-
1
n+1
=1-
1
n+1
=
n
n+1
(12分)
an+1
an
=
n2
(n+1)2
=
n
n+1

∴等式成立.(14分)
点评:本题考查数列的性质和综合运用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网