题目内容
已知数列{an}满足:a1=1,且对任意n∈N*都有| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
2
|
(Ⅰ)求a2,a3的值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)证明:
| a1a2 |
| a2a3 |
| anan+1 |
|
分析:(Ⅰ)由已知,
=
;得a2=
+
=
.由此可知a3=
.
(Ⅱ)由题意知
+
++
=
,
+
++
=
,
-
=2,由此可知an=
.
(Ⅲ)由题意知
+
++
═
+
++
=
-
+
-
++
-
=1-
=
,由此可知
+
+…+
=
(n∈N*).
| 1 | ||
|
| 1 | ||
2
|
| 1 |
| 4 |
| 1 | ||
|
| 1 | ||
|
| 1 | ||
2
|
| 1 |
| 9 |
(Ⅱ)由题意知
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
2
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
2
|
| 1 | ||
|
| 1 | ||
|
| 1 |
| n2 |
(Ⅲ)由题意知
| a1a2 |
| a2a3 |
| anan+1 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| n(n+1) |
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| n |
| n+1 |
| a1a2 |
| a2a3 |
| anan+1 |
|
解答:解:(Ⅰ)由已知,
=
;得a2=
+
=
;得a3=
(2分)
(Ⅱ)当n≥2时,
+
++
=
;①
+
++
=
;②
①-②得:
=
-
;(4分)
∴
-
=2
∴数列{
},?{
}皆为等差数列(6分)
∴
=
+(n-1)•2=2n-1
=
+(n-1)•2=2n(8分)
综上,
=n,
∴an=
.(9分)
(Ⅲ)
+
++
═
+
++
=
-
+
-
++
-
=1-
=
(12分)
=
=
∴等式成立.(14分)
| 1 | ||
|
| 1 | ||
2
|
| 1 |
| 4 |
| 1 | ||
|
| 1 | ||
|
| 1 | ||
2
|
| 1 |
| 9 |
(Ⅱ)当n≥2时,
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
2
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
2
|
①-②得:
| 1 | ||
|
| 1 | ||
2
|
| 1 | ||
2
|
∴
| 1 | ||
|
| 1 | ||
|
∴数列{
| 1 | ||
|
| 1 | ||
|
∴
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
综上,
| 1 | ||
|
∴an=
| 1 |
| n2 |
(Ⅲ)
| a1a2 |
| a2a3 |
| anan+1 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| n(n+1) |
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| n |
| n+1 |
|
|
| n |
| n+1 |
∴等式成立.(14分)
点评:本题考查数列的性质和综合运用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目