题目内容
设log2log
log
x=log3log
log
y=log5log
log
z=0,则x,y,z按从小到大的顺序排列是______
| 1 |
| 2 |
| 2 |
| 1 |
| 3 |
| 3 |
| 1 |
| 5 |
| 5 |
由log2log
log
x=log3log
log
y=log5log
log
z=0得;
=1,
=1,
=1,
得
=
,
=
,
=
;
解得:x=
,y=
,z=
所以z<x<y
故答案为z<x<y
| 1 |
| 2 |
| 2 |
| 1 |
| 3 |
| 3 |
| 1 |
| 5 |
| 5 |
| log |
|
| log |
|
| log |
|
得
| log | x
|
| 1 |
| 2 |
| log | y
|
| 1 |
| 3 |
| log | z
|
| 1 |
| 5 |
解得:x=
| 4 | 2 |
| 6 | 3 |
| 10 | 5 |
所以z<x<y
故答案为z<x<y
练习册系列答案
相关题目