题目内容

已知函数f(x)=
cos2x
sin(x+
π
4
)

(Ⅰ)求函数f(x)的定义域;
(Ⅱ)若f(x)=
4
3
,求sin2x的值.
(Ⅰ)由题意,sin(x+
π
4
)≠0
,(2分)
所以x+
π
4
≠kπ(k∈Z)
,(3分)
所以x≠kπ-
π
4
 (k∈Z)
,(4分)
函数f(x)的定义域为{x|x≠kπ-
π
4
,k∈Z }
;(5分)
(Ⅱ)f(x)=
cos2x
sin(x+
π
4
)
=
cos2x
sinxcos
π
4
+cosxsin
π
4
(7分)
=
2
cos2x
sinx+cosx
(8分)
=
2
(cos2x-sin2x)
sinx+cosx
=
2
(cosx-sinx)
,(10分)
因为f(x)=
4
3
,所以cosx-sinx=
2
2
3
.(11分)
所以sin2x=2sinxcosx=1-(1-2sinxcosx)=1-(cosx-sinx)2=1-
8
9
=
1
9
.(13分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网