题目内容
已知等比数列{an}中,a1=3,a4=81,若数列{bn}满足bn=log3an,则数列{
}的前n项和Sn=
.
| 1 |
| bnbn+1 |
| n |
| n+1 |
| n |
| n+1 |
分析:先根据等比数列通项公式求出an,进而可求得bn,利用裂项相消法可求得Sn.
解答:解:设公比为q,则a4=a1q3=3q3=81,
解得q=3,所以an=3×3n-1=3n,
bn=log3an=log33n=n,所以
=
=
-
,
Sn=
+
+…+
=1-
+
-
+…+
-
=1-
=
,
故答案为:
.
解得q=3,所以an=3×3n-1=3n,
bn=log3an=log33n=n,所以
| 1 |
| bnbn+1 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
Sn=
| 1 |
| b1b2 |
| 1 |
| b2b3 |
| 1 |
| bnbn+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
| n |
| n+1 |
故答案为:
| n |
| n+1 |
点评:本题考查等比数列的通项公式、数列求和,考查裂项相消法求和,若数列{an}为等差数列,公差d≠0,则数列{
}的前n项和可运用裂项相消法求和,其中
=
(
-
).
| 1 |
| anan+1 |
| 1 |
| anan+1 |
| 1 |
| d |
| 1 |
| an |
| 1 |
| an+1 |
练习册系列答案
相关题目