题目内容
已知等差数列{an}的公差d≠0,它的前n项和为Sn,若S5=35,且a2,a7,a22成等比数列.
(I)求数列{an}的通项公式;
(II)设数列{
}的前n项和为Tn,求Tn.
(I)求数列{an}的通项公式;
(II)设数列{
| 1 |
| Sn |
(I)设数列的首项为a1,则
∵S5=35,且a2,a7,a22成等比数列
∴
∵d≠0,∴d=2,a1=3
∴an=3+(n-1)×2=2n+1;
(II)Sn=
=n(n+2)
∴
=
=
(
-
)
∴Tn=
(1-
+
-
+
-
+…+
-
)=
(1+
-
-
)=
-
∵S5=35,且a2,a7,a22成等比数列
∴
|
∵d≠0,∴d=2,a1=3
∴an=3+(n-1)×2=2n+1;
(II)Sn=
| n(3+2n+1) |
| 2 |
∴
| 1 |
| Sn |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3 |
| 4 |
| 2n+3 |
| 2(n+1)(n+2) |
练习册系列答案
相关题目