题目内容

已知函数f(x)=ax2-bx+1.
(1)若f(x)>0的解集是(-3,4),求实数a,b的值;
(2)若a为整数,b=a+2,且函数f(x)在(-2,-1)上恰有一个零点,求a的值.
(1)若不等式ax2-bx+1>0的解集是(-3,4),
则方程ax2-bx+1=0的两根是x1=-3,x2=4,
所以
1
a
=x1x2=-12,
b
a
=x1+x2=1

所以a=-
1
12
,b=-
1
12

(2)因为b=a+2,
所以f(x)=ax2-(a+2)x+1,△=(a+2)2-4a=a2+4>0恒成立,
所以f(x)=ax2-bx+1必有两个零点,
又因为函数f(x)在(-2,-1)上恰有一个零点,
所以f(-2)f(-1)<0即(6a+5)(2a+3)<0,
解得     -
3
2
<a<-
5
6

又a∈Z,
∴a=-1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网