题目内容

已知数列{an}的前n项和为Sn,且a1=4,Sn=nan+2-(n≥2,n∈N*)
(1)求数列{an}的通项公式;
(2)设数列{bn}满足:b1=4,且bn+1=bn2-(n-1)bn-2(n∈N*),求证:bn>an(n≥2,n∈N*);
(3)求证:(n≥2,n∈N*)
解:(1)当n≥3时,
可得
可得
(2)1°当n=2时,不等式成立;
2°假设当n=k(k≥2,k∈N*)时,不等式成立,即
那么,当n=k+1时,
所以当n=k+1时,不等式也成立;
根据(1°),(2°)可知,当n≥2,n∈N*时,
(3)设f(x)=ln(1+x)-x,
∴f(x)在(0,+∞)上单调递减,∴f(x)<f(0),∴ln(1+x)<x
∵当n≥2,n∈N*时,


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网