题目内容
若函数f(x)=|x-2|(x-4)在区间(5a,4a+1)上单调递减,则实数a的取值范围是________.
分析:将函数化成分段函数的形式,不难得到它的减区间为(2,3).结合题意得:(5a,4a+1)⊆(2,3),由此建立不等关系,解之即可得到实数a的取值范围.
解答:函数f(x)=|x-2|(x-4)=
∴函数的增区间为(-∞,2)和(3,+∞),减区间是(2,3).
∵在区间(5a,4a+1)上单调递减,
∴(5a,4a+1)⊆(2,3),得
故答案为:
点评:本题给出含有绝对值的函数,在已知减区间的情况下求参数a的取值范围,着重考查了函数的单调性和单调区间求法等知识,属于中档题.
练习册系列答案
相关题目
若函数f(x)(x∈R)为奇函数,且存在反函数f-1(x)(与f(x)不同),F(x)=
,则下列关于函数F(x)的奇偶性的说法中正确的是( )
| 2f(x)-2f-1(x) |
| 2f(x)+2f-1(x) |
| A、F(x)是奇函数非偶函数 |
| B、F(x)是偶函数非奇函数 |
| C、F(x)既是奇函数又是偶函数 |
| D、F(x)既非奇函数又非偶函数 |