题目内容
已知函数f(x)=4sin2(
+x)-2
cos2x-1,且
≤x≤
.
①求f(x)的最大值及最小值;
②求f(x)的在定义域上的单调递减区间.
| π |
| 4 |
| 3 |
| π |
| 4 |
| π |
| 2 |
①求f(x)的最大值及最小值;
②求f(x)的在定义域上的单调递减区间.
①f(x)=4×
-2
cos2x-1=2sin2x-2
cos2x+1=4sin(2x-
)+1,
∵
≤x≤
,∴
≤2x-
≤
,
∴
≤sin(2x-
)≤1,
则f(x)max=5,f(x)min=3;
②由
≤2x-
≤
,解得:
≤x≤
,
则f(x)的单调递减区间为[
,
].
1-cos(
| ||
| 2 |
| 3 |
| 3 |
| π |
| 3 |
∵
| π |
| 4 |
| π |
| 2 |
| π |
| 6 |
| π |
| 3 |
| 2π |
| 3 |
∴
| 1 |
| 2 |
| π |
| 3 |
则f(x)max=5,f(x)min=3;
②由
| π |
| 2 |
| π |
| 3 |
| 2π |
| 3 |
| 5π |
| 12 |
| π |
| 2 |
则f(x)的单调递减区间为[
| 5π |
| 12 |
| π |
| 2 |
练习册系列答案
相关题目