题目内容
(2012•浙江模拟)已知各项均为非负实数的数列{an},{bn}满足:对任意正整数n,都有an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列,且a1=0,b1=1.
(I)求证:数列{
}是等差数列;
(II) 设Sn=
+
+…
,Tn=
+
+…
,当n≥2,n∈N时,试比较
Sn与Tn的大小.
(I)求证:数列{
| bn |
(II) 设Sn=
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| 7 |
| 5 |
分析:(I)由已知,得2bn=an+an+1,an+12=bn•bn+1,故an+1=
,所以2bn=
+
,由此能够证明{
}是等差数列.
(II)由a1=0,b1=1,得a2=2,b2=4,a3=6,b3=9,由{
}是等差数列,得bn=n2,由此入手能够证明
Sn<Tn.
| bnbn+1 |
| bn-1bn |
| bnbn+1 |
| bn |
(II)由a1=0,b1=1,得a2=2,b2=4,a3=6,b3=9,由{
| bn |
| 7 |
| 5 |
解答:解:(I)∵an,bn,an+1成等差数列,
∴2bn=an+an+1,①
∵bn,an+1,bn+1成等比数列,
∴an+12=bn•bn+1,②
由②得an+1=
,③
将③代入①,得对任意n≥2,n∈N*,
有2bn=
+
,
即2
=
+
,
∴{
}是等差数列.
(II)∵a1=0,b1=1,
∴a2=2,b2=4,a3=6,b3=9,
又{
}是等差数列,
故bn=n2,
当n≥2时,an=n(n-1),
又a1=0,∴an=n(n-1),
∴Sn=1-
,(n≥2),
当n=2时,
S2=
<T2,
当n=3时,
S3=
<T3,
当n≥4时,Tn≥
+
+
+
=
>
,
而
Sn=
(1-
)<
,
综上,
Sn<Tn.
∴2bn=an+an+1,①
∵bn,an+1,bn+1成等比数列,
∴an+12=bn•bn+1,②
由②得an+1=
| bnbn+1 |
将③代入①,得对任意n≥2,n∈N*,
有2bn=
| bn-1bn |
| bnbn+1 |
即2
| bn |
| bn-1 |
| bn+1 |
∴{
| bn |
(II)∵a1=0,b1=1,
∴a2=2,b2=4,a3=6,b3=9,
又{
| bn |
故bn=n2,
当n≥2时,an=n(n-1),
又a1=0,∴an=n(n-1),
∴Sn=1-
| 1 |
| n |
当n=2时,
| 7 |
| 5 |
| 7 |
| 10 |
当n=3时,
| 7 |
| 5 |
| 14 |
| 15 |
当n≥4时,Tn≥
| 1 |
| 1 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 42 |
| 205 |
| 144 |
| 7 |
| 5 |
而
| 7 |
| 5 |
| 7 |
| 5 |
| 1 |
| n |
| 7 |
| 5 |
综上,
| 7 |
| 5 |
点评:本题考查等差数列的证明和不等式的证明,综合性强,难度大,是高考的重点.解题时要认真审题,熟练掌握等差数列、等比数列的通项公式和前n项和公式的灵活运用.
练习册系列答案
相关题目