题目内容
已知点A(1,
)是函数f(x)=ax(a>0且a≠1)的图象上一点,等比数列an的前n项和为f(n)-c,数列bn(bn>0)的首项为c,且前n项和Sn满足Sn-Sn-1=
+
(n≥2).
(1)求数列{an}与{bn}的通项公式.
(2)若数列{
}的前n项和为Tn,问满足Tn>
的最小整数是多少?
(3)若Cn=-
,求数列Cn的前n项和Pn.
| 1 |
| 3 |
| Sn |
| Sn-1 |
(1)求数列{an}与{bn}的通项公式.
(2)若数列{
| 1 |
| bnbn+1 |
| 1000 |
| 2011 |
(3)若Cn=-
| 2bn |
| a n |
(1)∵点A(1,
)是函数f(x)=ax(a>0且a≠1)的图象上一点f(1)=a=
∵等比数列an的前n项和为f(n)-c
∴当n≥2时,an=[f(n)-c]-[f(n-1)-c]=-
∵{an}为等比数列
∴公比q=
=
∵a2=-
=a1q=[f(1)-c]•
=(
-c)•
∴c=1,a1=-
,an=-
(3分)
由题设可知数列bn(bn>0)的首项为b1=c=1Sn-Sn-1=
+
(n≥2)
∴(
-
)(
+
)=
+
∴
-
=1
∴数列{
}是首项为1,公差为1的等差数列.
则
=n,Sn=n2 bn=Sn-Sn-1=n2-(n-1)2=2n-1
当n=1时,b1=1,也满足bn=2n-1
数列{bn }的通项公式.bn=2n-1(6分)
(2)∵bn=2n-1
∴
=
=
(
-
)
∴Tn=
+
+
++
=
[(1-
)+(
-
)+(
-
)]=
要使Tn>
,
则
>
,即n>90
∴满足Tn>
的最小整数为91(11分)
(3)∵an=-
,bn=2n-1
∴Cn=-
=(2n-1)•3nPn=1•3+3•32+5•33++(2n-1)•3n①
3Pn=1•32+3•33+5•34++(2n-1)•3n+1..②
①-②得:-2Pn=3+2(32+33+34+3n)-(2n-1)•3n+1=3+2•
-(2n-1)•3n+1=(2-2n)•3n+1-6
∴Pn=3+(n-1)•3n+1.(16分)
| 1 |
| 3 |
| 1 |
| 3 |
∵等比数列an的前n项和为f(n)-c
∴当n≥2时,an=[f(n)-c]-[f(n-1)-c]=-
| 2 |
| 3n |
∵{an}为等比数列
∴公比q=
| an |
| an-1 |
| 1 |
| 3 |
∵a2=-
| 2 |
| 9 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
∴c=1,a1=-
| 2 |
| 3 |
| 2 |
| 3n |
由题设可知数列bn(bn>0)的首项为b1=c=1Sn-Sn-1=
| Sn |
| Sn-1 |
∴(
| Sn |
| Sn-1 |
| Sn |
| Sn-1 |
| Sn |
| Sn-1 |
∴
| Sn |
| Sn-1 |
∴数列{
| Sn |
则
| Sn |
当n=1时,b1=1,也满足bn=2n-1
数列{bn }的通项公式.bn=2n-1(6分)
(2)∵bn=2n-1
∴
| 1 |
| bnbn+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Tn=
| 1 |
| b1b2 |
| 1 |
| b2b3 |
| 1 |
| b3b4 |
| 1 |
| bnbn+1 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
要使Tn>
| 1000 |
| 2011 |
则
| n |
| 2n+1 |
| 1000 |
| 2011 |
| 10 |
| 11 |
∴满足Tn>
| 1000 |
| 2011 |
(3)∵an=-
| 2 |
| 3n |
∴Cn=-
| 2bn |
| a n |
3Pn=1•32+3•33+5•34++(2n-1)•3n+1..②
①-②得:-2Pn=3+2(32+33+34+3n)-(2n-1)•3n+1=3+2•
| 32(1-3n-1) |
| 1-3 |
∴Pn=3+(n-1)•3n+1.(16分)
练习册系列答案
相关题目