题目内容
已知数列{an}是公差为正的等差数列,其前n项和为Sn,点(n,Sn)在抛物线y=
x2+
x上;各项都为正数的等比数列{bn}满足b1b3=
,b5=
.
(1)求数列{an},{bn}的通项公式;
(2)记Cn=anbn,求数列{Cn}的前n项和Tn.
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 16 |
| 1 |
| 32 |
(1)求数列{an},{bn}的通项公式;
(2)记Cn=anbn,求数列{Cn}的前n项和Tn.
(1)∵点(n,Sn)在抛物线y=
x2+
x上,
∴Sn=
n2+
n,
当n=1时,a1=S1=2…(1分)
当n≥2时,Sn-1=
(n-1)2+
(n-1)=
n2-
n+1,
∴an=Sn-Sn-1=3n-1…(3分)
∴数列{an}是首项为2,公差为3的等差数列,
∴an=3n-1…(4分)
又∵各项都为正数的等比数列{bn}满足b1b3=
,b5=
,
设等比数列{bn}的公比为q,
∴b2=b1q=
,b1q4=
…(5分)
解得b1=
,q=
…(6分)
∴bn=(
)n…(7分)
(2)由(1)可知Cn=(3n-1)•(
)n…(8分)
∴Tn=2×
+5×(
)2+…+(3n-3)×(
)n-1+(3n-1)×(
)n…①…(9分)
∴
Tn=2×(
)2+5×(
)3+…+(3n-3)×(
)n+(3n-1)×(
)n+1…②…(10分)
②-①知∴
Tn=1+3[(
)2+(
)3+…+(
)n]-(3n-1)×(
)n+1
=1+3×
-(3n-1)×(
)n+1=
-3×(
)n-(3n-1)×(
)n+1…(12分)
∴Tn=5-
…(13分)
| 3 |
| 2 |
| 1 |
| 2 |
∴Sn=
| 3 |
| 2 |
| 1 |
| 2 |
当n=1时,a1=S1=2…(1分)
当n≥2时,Sn-1=
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 5 |
| 2 |
∴an=Sn-Sn-1=3n-1…(3分)
∴数列{an}是首项为2,公差为3的等差数列,
∴an=3n-1…(4分)
又∵各项都为正数的等比数列{bn}满足b1b3=
| 1 |
| 4 |
| 1 |
| 32 |
设等比数列{bn}的公比为q,
∴b2=b1q=
| 1 |
| 4 |
| 1 |
| 32 |
解得b1=
| 1 |
| 2 |
| 1 |
| 2 |
∴bn=(
| 1 |
| 2 |
(2)由(1)可知Cn=(3n-1)•(
| 1 |
| 2 |
∴Tn=2×
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
②-①知∴
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=1+3×
| ||||
1-
|
| 1 |
| 2 |
| 5 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴Tn=5-
| 3n+5 |
| 2n |
练习册系列答案
相关题目