题目内容
数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0
(1)求数列的通项公式;
(2)设Sn=|a1|+|a2|+…+|an|,求Sn.
(1)求数列的通项公式;
(2)设Sn=|a1|+|a2|+…+|an|,求Sn.
(1)an+2-2an+1+an=0∴an+2-an+1=an+1-an
∴{an+1-an}为常数列,
∴{an}是以a1为首项的等差数列,
设an=a1+(n-1)d,a4=a1+3d,
∴d=
=-2,
∴an=10-2n.
(2)∵an=10-2n,令an=0,得n=5.
当n>5时,an<0;当n=5时,an=0;当n<5时,an>0.
∴当n>5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+a5-(a6+a7+…+an)=T5-(Tn-T5)=2T5-Tn,Tn=a1+a2+…+an.
当n≤5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+an=Tn.
∴Sn=
∴{an+1-an}为常数列,
∴{an}是以a1为首项的等差数列,
设an=a1+(n-1)d,a4=a1+3d,
∴d=
| 2-8 |
| 3 |
∴an=10-2n.
(2)∵an=10-2n,令an=0,得n=5.
当n>5时,an<0;当n=5时,an=0;当n<5时,an>0.
∴当n>5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+a5-(a6+a7+…+an)=T5-(Tn-T5)=2T5-Tn,Tn=a1+a2+…+an.
当n≤5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+an=Tn.
∴Sn=
|
练习册系列答案
相关题目
数列{an}中,a1=
,an+an+1=
,n∈N*,则
(a1+a2+…+an)等于( )
| 1 |
| 5 |
| 6 |
| 5n+1 |
| lim |
| n→∞ |
A、
| ||
B、
| ||
C、
| ||
D、
|