题目内容
(2013•成都模拟)两等差数列{an}、{bn}的前n项和分别为Sn和Tn,且(2n+7)Sn=(5n+3)Tn,则
的值是( )
| a5 |
| b5 |
分析:由题意可得
=
,而由等差数列的性质可得
=
,代入可求.
| Sn |
| Tn |
| 5n+3 |
| 2n+7 |
| a5 |
| b5 |
| S9 |
| T9 |
解答:解:由题意可得
=
,
而
=
=
=
=
=
,
故选D
| Sn |
| Tn |
| 5n+3 |
| 2n+7 |
而
| a5 |
| b5 |
| 9a5 |
| 9b5 |
| ||
|
=
| S9 |
| T9 |
| 5×9+3 |
| 2×9+7 |
| 48 |
| 25 |
故选D
点评:本题考查等差数列的性质和求和公式,化
=
是解决问题的关键,属中档题.
| a5 |
| b5 |
| S9 |
| T9 |
练习册系列答案
相关题目