题目内容
(2013•南充一模)设数列{an}的各项都为正数,其前n项和为Sn,已知对任意n∈N*,Sn是
和an的等差中项.
(Ⅰ)证明数列{an}为等差数列,并求数列{an}的通项公式;
(Ⅱ)证明
+
+…+
<2.
| a | 2 n |
(Ⅰ)证明数列{an}为等差数列,并求数列{an}的通项公式;
(Ⅱ)证明
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
分析:(Ⅰ)由Sn是
和an的等差中项,知2Sn=an2+an,且an>0,由此能够证明数列{an}为等差数列,并能求出数列{an}的通项公式.
(Ⅱ)由an=n,则Sn=
,故
=
=2(
-
),由此能够证明
+
+…+
<2.
| a | 2 n |
(Ⅱ)由an=n,则Sn=
| n(n+1) |
| 2 |
| 1 |
| Sn |
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
解答:解:(Ⅰ)∵Sn是
和an的等差中项,
∴2Sn=an2+an,且an>0,
当n=1时,2a1=a12+a1,解得a1=1,
当n≥2时,有2Sn-1=an-12+an-1,
∴2Sn-2Sn-1=an2-an-12+an-an-1,
即2an=an2-an-12+an-an-1,
∴an2-an-12=an+an-1,
即(an+an-1)(an-an-1)=an+an-1,
∵an+an-1>0,
∴an-an-1=1,n≥2,
∴数列{an}是首项为1,公差为1的等差数列,且an=n.
(Ⅱ)∵an=n,
则Sn=
,
∴
=
=2(
-
),
∴
+
+
+…+
=2[(1-
)+(
-
)+…+(
-
)]
=2(1-
)<2.
∴
+
+…+
<2.
| a | 2 n |
∴2Sn=an2+an,且an>0,
当n=1时,2a1=a12+a1,解得a1=1,
当n≥2时,有2Sn-1=an-12+an-1,
∴2Sn-2Sn-1=an2-an-12+an-an-1,
即2an=an2-an-12+an-an-1,
∴an2-an-12=an+an-1,
即(an+an-1)(an-an-1)=an+an-1,
∵an+an-1>0,
∴an-an-1=1,n≥2,
∴数列{an}是首项为1,公差为1的等差数列,且an=n.
(Ⅱ)∵an=n,
则Sn=
| n(n+1) |
| 2 |
∴
| 1 |
| Sn |
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| S3 |
| 1 |
| Sn |
=2[(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=2(1-
| 1 |
| n+1 |
∴
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
点评:本题考查等差数列的证明,考查数列的通项公式的求法,考查不等式的证明.解题时要认真审题,仔细解答,注意裂项求和法的合理运用.
练习册系列答案
相关题目