题目内容
已知函数f(x)=sin
cos
+cos
sin
+2cos2x-1(x∈R).
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)的单调递增区间.
| 3x |
| 2 |
| x |
| 2 |
| 3x |
| 2 |
| x |
| 2 |
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)的单调递增区间.
分析:(I)利用两角和的正弦公式和周期公式即可得出;
(II)利用正弦函数的单调性即可得出.
(II)利用正弦函数的单调性即可得出.
解答:解:(I)f(x)=sin2x+cos2x=
(
sin2x+
cos2x)=
sin(2x+
),
∴T=
=π.
(II)由-
+2kπ≤2x+
≤
+2kπ,解得-
+kπ≤x≤
+kπ(k∈Z).
∴函数f(x)的单调递增区间是[-
+kπ,kπ+
](k∈Z).
| 2 |
| ||
| 2 |
| ||
| 2 |
| 2 |
| π |
| 4 |
∴T=
| 2π |
| 2 |
(II)由-
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
| 3π |
| 8 |
| π |
| 8 |
∴函数f(x)的单调递增区间是[-
| 3π |
| 8 |
| π |
| 8 |
点评:本题考查了正弦函数的图象与性质、两角和的正弦公式,属于基础题.
练习册系列答案
相关题目