题目内容
已知等差数列{ an}的前n项和为Sn,公差d≠0,S5=4a3+5,且a1、a2、a5成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)当n≥2,n∈N*时,求
.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)当n≥2,n∈N*时,求
| n |
| i=2 |
| 1 |
| Sn-1 |
分析:(I)根据等差数列的通项公式和题中的关系,建立首项a1与公差d的方程组,解之得a1=1,d=2,即可得到数列{an}的通项公式;
(II)由等差数列求和公式,得Sn=n2,从而得到
=
.因为
=
(
-
),利用裂项相消的方法,可得
═
-
.
(II)由等差数列求和公式,得Sn=n2,从而得到
| 1 |
| Sn-1 |
| 1 |
| n2-1 |
| 1 |
| n2-1 |
| 1 |
| 2 |
| 1 |
| n-1 |
| 1 |
| n+1 |
| n |
| i=2 |
| 1 |
| Sn-1 |
| 3 |
| 4 |
| 2n+1 |
| 2n(n+1) |
解答:解:(Ⅰ)∵S5=4a3+5,
∴5a1+
d=4(a1+2d)+5…①(2分)
∵a1、a2、a5成等比数列,
∴a1(a1+4d)=(a1+d)2…②(4分)
联解①、②并结合公差d≠0,得a1=1,d=2.
∴a1=1+2(n-1)=2n-1.…(6分)
(Ⅱ)由a1=2n-1,可得Sn=
=n2.
所以当n≥2,(n∈N*)时,
=
.
∵
=
(
-
).…(9分)
∴
=
(1-
),
=
(
-
),
=
(
-
),
=
(
-
),…
=
(
-
),
=
(
-
)
∴
+
+
+…+
+
=
[(1-
)+(
-
)+(
-
)+(
-
)+…+(
-
)+(
-
)]
=
(1+
-
-
)=
-
∴
=
-
.…(12分)
∴5a1+
| 5×4 |
| 2 |
∵a1、a2、a5成等比数列,
∴a1(a1+4d)=(a1+d)2…②(4分)
联解①、②并结合公差d≠0,得a1=1,d=2.
∴a1=1+2(n-1)=2n-1.…(6分)
(Ⅱ)由a1=2n-1,可得Sn=
| n(1+2n-1) |
| 2 |
所以当n≥2,(n∈N*)时,
| 1 |
| Sn-1 |
| 1 |
| n2-1 |
∵
| 1 |
| n2-1 |
| 1 |
| 2 |
| 1 |
| n-1 |
| 1 |
| n+1 |
∴
| 1 |
| S2-1 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| S3-1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| S4-1 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| S4-1 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 6 |
| 1 |
| Sn-1-1 |
| 1 |
| 2 |
| 1 |
| n-2 |
| 1 |
| n |
| 1 |
| Sn-1 |
| 1 |
| 2 |
| 1 |
| n-1 |
| 1 |
| n+1 |
∴
| 1 |
| S2-1 |
| 1 |
| S3-1 |
| 1 |
| S4-1 |
| 1 |
| Sn-1-1 |
| 1 |
| Sn-1 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 4 |
| 1 |
| 6 |
| 1 |
| n-2 |
| 1 |
| n |
| 1 |
| n-1 |
| 1 |
| n+1 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
| 3 |
| 4 |
| 2n+1 |
| 2n(n+1) |
∴
| n |
| i=2 |
| 1 |
| Sn-1 |
| 3 |
| 4 |
| 2n+1 |
| 2n(n+1) |
点评:本题给出等差数列满足的关系式,求数列的通项公式并求
的前n项和.着重考查了等差数列的通项公式、前n项和公式和裂项求和方法等知识,属于中档题.
| 1 |
| Sn-1 |
练习册系列答案
相关题目