题目内容

已知函数f(x)的定义域为[-2,4],且f(4)=f(-2)=1,f′(x)为f(x)的导函数,函数y=f′(x)的图象如图所示,则平面区域f(2a+b)<1(a≥0,b≥0)所围成的面积是


  1. A.
    2
  2. B.
    4
  3. C.
    5
  4. D.
    8
B
分析:根据导函数的图象,分析原函数的性质或作出原函数的草图,找出a、b满足的条件,画出平面区域,即可求解.
解答:解:由图可知[-2,0)上f′(x)<0,
∴函数f(x)在[-2,0)上单调递减,(0,4]上f′(x)>0,
∴函数f(x)在(0,4]上单调递增,
故在[-2,4]上,f(x)的最大值为f(4)=f(-2)=1,
∴f(2a+b)<1(a≥0,b≥0)?
表示的平面区域如图所示:
故选B.
点评:本题考查了导数与函数单调性的关系,以及线性规划问题的综合应用,属于高档题.解决时要注意数形结合思想应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网