题目内容
已知数列{an}满足:a1=
,an=(1-
)an+1+
(1)设bn=
,求数列{bn}的通项公式;
(2)求数列{an}的前n项和.
| 1 |
| 2 |
| 1 |
| n+1 |
| n |
| 3n |
(1)设bn=
| an |
| n |
(2)求数列{an}的前n项和.
(1)∵a1=
,an=(1-
)an+1+
由已知有
=
-
∴bn+1-bn=-
利用累差迭加即可求出数列{bn}的通项公式:bn=
(n∈N*,n≥2)
经验证知上式对n=1时也成立,
(II)由(I)知an=
=
•
,∴Sn=
(
+
++
)=
-
| 1 |
| 2 |
| 1 |
| n+1 |
| n |
| 3n |
由已知有
| an+1 |
| n+1 |
| an |
| n |
| 1 |
| 3n |
| 1 |
| 3n |
利用累差迭加即可求出数列{bn}的通项公式:bn=
| 1 |
| 2•3n-1 |
经验证知上式对n=1时也成立,
(II)由(I)知an=
| n |
| 2•3n-1 |
| 3 |
| 2 |
| n |
| 3n |
| 3 |
| 2 |
| 1 |
| 3 |
| 2 |
| 32 |
| n |
| 3n |
| 9 |
| 8 |
| 9+6n |
| 8•3n |
练习册系列答案
相关题目