题目内容
已知9x-12•3x+27≤0,求y=(log2
)•(log
)最值及对应的x值.
| x |
| 2 |
| 1 |
| 2 |
| ||
| 2x |
分析:由指数不等式9x-12•3x+27≤0,解出1≤x≤2,再设t=log2x,我们易确定出t=log2x的最大值和最小值,进而得到t取值范围;由已知中y=(log2
)•(log
),根据t的范围,我们可以使用换元法,将问题转化为一个二次函数在定区间上的最值问题,根据二次函数的性质易得答案.
| x |
| 2 |
| 1 |
| 2 |
| ||
| 2x |
解答:解:∵9x-12•3x+27≤0,∴(3x-3)•(3x-9)≤0,即3≤3x≤9,得1≤x≤2,
∴y=(log2x-1)(log
2
+log
2x)=(log2x-1)(log2x+
)
∴令t=log2x,则0≤t≤1,
y=t2-
t-
= (t-
)2-
,
∴当t=1,即x=2时,y取得最大值0;
当t=
,即x=
时,y取得最小值-
.
∴y=(log2x-1)(log
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴令t=log2x,则0≤t≤1,
y=t2-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 9 |
| 16 |
∴当t=1,即x=2时,y取得最大值0;
当t=
| 1 |
| 4 |
| 4 | 2 |
| 9 |
| 16 |
点评:本题考查的知识点是对数函数的图象与性质的综合应用,二次函数在定区间上的最值问题,熟练掌握对数函数的性质和二次函数的性质是解答本题的关键.
练习册系列答案
相关题目