题目内容
设f(x)=| ax | x+a |
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项的和.
分析:(1)根据题设条件,先求出a1,a2,a3,a4,然后观察它们的规律,猜想出an,再用数学归纳法进行证明.
(2)由bn=anan+1=
•
=a2(
-
),可用裂项法进行求和.
(2)由bn=anan+1=
| a |
| a+n-1 |
| a |
| a+n |
| 1 |
| a+n-1 |
| 1 |
| a+n |
解答:解:(1)a1=1,a2=f(1)=
,a3=f(
) =
=
,a4=f(
) =
=
,由此猜想an=
.下面用数学归纳法证明这个猜想.
①当n=1时,a1=
=1,等式成立.
②假设当n=k时,等式成立.即ak=
.
当n=k+1时,ak+1=f(ak) =
=
,等式成立.由①②知an=
.
(2)∵bn=anan+1=
•
=a2(
-
),
数列{bn}的前n项的和=b1+b2+…+bn=a2(
-
) +a2(
-
) +…+a2(
-
)
=a2(
-
).
| a |
| 1+a |
| a |
| a+1 |
a×
| ||
|
| a |
| a+2 |
| a |
| a+2 |
a×
| ||
|
| a |
| a+3 |
| a |
| a+n-1 |
①当n=1时,a1=
| a |
| a+1-1 |
②假设当n=k时,等式成立.即ak=
| a |
| a+k-1 |
当n=k+1时,ak+1=f(ak) =
a×
| ||
|
| a |
| a+k |
| a |
| a+n-1 |
(2)∵bn=anan+1=
| a |
| a+n-1 |
| a |
| a+n |
| 1 |
| a+n-1 |
| 1 |
| a+n |
数列{bn}的前n项的和=b1+b2+…+bn=a2(
| 1 |
| a |
| 1 |
| a+1 |
| 1 |
| a+1 |
| 1 |
| a+2 |
| 1 |
| a+n-1 |
| 1 |
| a+n |
=a2(
| 1 |
| a |
| 1 |
| a+n |
点评:本题考查数列通项公式的求法和数列求和,解题时要注意数学归纳法和裂项求和法的应用.
练习册系列答案
相关题目